Search results for "Photovoltaic Effect"

showing 10 items of 13 documents

Direct assessment of p–n junctions in single GaN nanowires by Kelvin probe force microscopy

2016

Making use of Kelvin probe force microscopy, in dark and under ultraviolet illumination, we study the characteristics of p-n junctions formed along the axis of self-organized GaN nanowires (NWs). We map the contact potential difference of the single NW p-n junctions to locate the space charge region and directly measure the depletion width and the junction voltage. Simulations indicate a shrinkage of the built-in potential for NWs with small diameter due to surface band bending, in qualitative agreement with the measurements. The photovoltage of the NW/substrate contact is studied by analysing the response of NW segments with p- and n-type doping under illumination. Our results show that th…

Materials scienceElectrical junctionNanowireBioengineering02 engineering and technologyPhotovoltaic effect7. Clean energy01 natural sciencessymbols.namesakeOpticsDepletion region0103 physical sciencesGeneral Materials ScienceElectrical and Electronic EngineeringOhmic contactComputingMilieux_MISCELLANEOUS010302 applied physicsKelvin probe force microscope[PHYS]Physics [physics]Nanotecnologiabusiness.industryMechanical EngineeringFermi levelGeneral ChemistryCiència dels materials021001 nanoscience & nanotechnologyMechanics of MaterialssymbolsOptoelectronics0210 nano-technologybusinessVolta potential
researchProduct

Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode

2016

International audience; An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider r…

Materials scienceNanostructurePhysics and Astronomy (miscellaneous)optimisationNanotechnology02 engineering and technologyPhotovoltaic effectCarbon nanotube010402 general chemistry7. Clean energy01 natural scienceselectric resistance measurementlaw.inventioninfrared detectorslawMicroscopyThin filmNanoscopic scalethin film sensorsatomic force microscopycarbon nanotubesMolecular electronicsself-assembly[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)monolayersphotodetectors0210 nano-technology
researchProduct

Photoconductivity and photovoltaic effect in indium selenide

1983

Transport and phototransport properties of crystalline indium monoselenide (InSe) doped with a variety of elements are reported. Measured mobilities, lifetimes, and effective diffusion lengths of photoexcited carriers are used to interpret electrical and photovoltaic properties of several different structures. These include p‐n junctions, bismuth/p‐type InSe, platinum/n‐type InSe, and indium tin oxyde (ITO)/p‐type InSe. External solar efficiencies of the best devices are between 5% and 6%. The influence on the efficiency of the various parameters is evaluated, and ways of improvement are discussed.

Materials sciencePhotoconductivityInorganic chemistryN−Type ConductorsGeneral Physics and Astronomychemistry.chemical_elementPhotovoltaic effectIndium CompoundsEfficiencyCrystalsBismuthPhotovoltaic EffectCharge Carrierschemistry.chemical_compoundP−Type ConductorsIndium Selenides ; Photoconductivity ; Photovoltaic Effect ; Experimental Data ; Crystals ; Doped Materials ; Mobility ; Lifetime ; Diffusion Length ; Charge Carriers ; Electrical Properties ; P−N Junctions ; P−Type Conductors ; N−Type Conductors ; Bismuth ; Platinum ; Indium Compounds ; Tin Oxides ; Efficiency:FÍSICA [UNESCO]SelenideDoped MaterialsPlatinumMobilityIndium Selenidesbusiness.industryPhotoconductivityElectrical PropertiesDopingP−N JunctionsUNESCO::FÍSICATin OxidesDiffusion LengthchemistryOptoelectronicsExperimental DataCharge carrierTinbusinessBismuthIndiumLifetime
researchProduct

Polarization backward-wave four-wave mixing in BaTiO_3:Fe using the photovoltaic effect

1997

We report the first study to our knowledge of polarization backward-wave four-wave mixing in a BaTiO3:Fe crystal and compare the results of our measurements with the calculations performed within the model of photovoltaic charge transport. Two identically polarized pump waves and one orthogonally polarized signal wave are sent to a sample in a plane normal to the crystal’s C axis; a phase-conjugate wave with polarization identical to that of the signal wave is generated. With a 2-mm-thick sample a phase-conjugate reflectivity Rpc≈0.01 is reached; for a 1-cm-thick sample, amplified reflection should be possible.

Materials sciencebusiness.industryStatistical and Nonlinear PhysicsTransverse wavePhotovoltaic effectElliptical polarizationPolarization (waves)Atomic and Molecular Physics and OpticsFour-wave mixingOpticsCross-polarized wave generationDegree of polarizationAtomic physicsbusinessCircular polarizationJournal of the Optical Society of America B
researchProduct

Light absorption and conversion in solar cell based on Si:O alloy

2013

Thin film Si:O alloys have been grown by plasma enhanced chemical vapor deposition, as intrinsic or highly doped (1 to 5 at. % of B or P dopant) layers. UV-visible/near-infrared spectroscopy revealed a great dependence of the absorption coefficient and of the optical gap (Eg) on the dopant type and concentration, as Eg decreases from 2.1 to 1.9 eV, for the intrinsic or highly p-doped sample, respectively. Thermal annealing up to 400 °C induces a huge H out-diffusion which causes a dramatic absorption increase and a reduction of Eg, down to less than 1.8 eV. A prototypal solar cell has been fabricated using a 400 nm thick, p-i-n structure made of Si:O alloy embedded within flat transparent c…

Open circuit voltageSiliconAbsorption co-efficientMaterials scienceAnnealing (metallurgy)Analytical chemistryGeneral Physics and AstronomyPhotovoltaic effectChemical vapor depositionSettore ING-INF/01 - Elettronicalaw.inventionPlasma enhanced chemical vapor depositionOut-diffusionPlasma-enhanced chemical vapor depositionlawSolar cellDoping (additives)Thin filmAbsorption (electromagnetic radiation)Infrared spectroscopyElectrical analysiDopantDopingP-i-n structureDevice fabricationThermal-annealingSolar cells Silicon alloysPhotovoltaicTransparent conductive oxides Cerium alloyJournal of Applied Physics
researchProduct

Electrical and photovoltaic properties of indium‐tin‐oxide/p‐InSe/Au solar cells

1987

Conditions for efficiency improvement and optimization in indium‐tin‐oxide/p‐indium‐selenide solar cells are discussed in this paper. This aim is achieved by using low‐resistivity p‐indium‐selenide and by incorporating a back‐surface‐field contact. This contact is insured by a p‐indium selenide/gold barrier whose rectifying behavior is explained through the complex impurity structure of p‐indium‐selenide. Electrical and photovoltaic properties of the cells are also reported. The efficiency parameters under AM1 simulated conditions have been improved up to 32 mA/cm2 for the short‐circuit current density, 0.58 V for the open‐circuit voltage, and 0.63 for the filling factor. As a result, solar…

OptimizationMaterials sciencePerformanceIndium OxidesGeneral Physics and Astronomychemistry.chemical_elementEfficiencyPhotovoltaic effectIndium Selenide Solar CellsPhotovoltaic Effectchemistry.chemical_compound:FÍSICA [UNESCO]Selenidebusiness.industryElectrical PropertiesOptimization ; Efficiency ; Indium Selenide Solar Cells ; Performance ; Indium Oxides ; Tin Oxides ; Photovoltaic Effect ; Electrical Properties ; Experimental DataPhotovoltaic systemEnergy conversion efficiencyUNESCO::FÍSICATin OxidesSolar energyIndium tin oxidechemistryExperimental DataOptoelectronicsbusinessCurrent densityIndiumJournal of Applied Physics
researchProduct

Polymer solar cells with novel fullerene-based acceptor

2004

Abstract Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer–fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer–fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current–voltage measurements and external quantum yield spectroscopy. Further studies …

Organic solar cellbusiness.industryChemistryPhotovoltaic systemMetals and AlloysSettore CHIM/06 - Chimica OrganicaSurfaces and InterfacesPhotovoltaic effectHybrid solar cellAcceptorPolymer solar cellSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionlawPhotovoltaicsfullerene derivativessolar cellsSolar cellMaterials ChemistryOptoelectronicsOrganic chemistrybusinessThin Solid Films
researchProduct

Phase conjugation in BaTiO 3 by use of the indirect photorefractive coupling of orthogonally polarized light waves

1998

A phase-conjugate wave is generated when an ordinary (extraordinary) signal wave is mixed with two counterpropagating extraordinary (ordinary) waves in the plane normal to the BaTiO3 polar axis. The photorefractive grating that couples the ordinary and the extraordinary waves appears if the incident waves induce a noticeable conical parametric scattering; this grating is a difference grating of many noisy scattering gratings recorded by means of the usual diffusion-mediated charge transport. For comparable intensities of signal and pump waves this type of nonlinear wave mixing is much more efficient than that which is due to the circular bulk photovoltaic effect.

Physicsbusiness.industryScatteringPhysics::OpticsStatistical and Nonlinear PhysicsAnomalous photovoltaic effectPhotorefractive effectGratingDiffraction efficiencyPolarization (waves)Atomic and Molecular Physics and OpticsLight intensityOpticsbusinessPhase conjugationJournal of the Optical Society of America B
researchProduct

Photovoltaic performance of amorphous silicon flexible solar modules under mechanical loading

2007

The applications of photovoltaic devices can be significantly expanded by directly integrating them into structures. Solar cells integrated into structures can help to power a variety of devices such as structural monitoring sensors and unmanned aerial vehicles (UAVs). However, little work has been reported in the literature on the performance of solar cells under deformation. Thus, a thorough investigation on the photovoltaic behavior of solar modules under mechanical loading is necessary in order to provide the optimal integration conditions for practical applications. The photovoltaic performance of commercially available amorphous silicon solar modules was tested under applied mechanica…

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiFailure (mechanical) Photovoltaic effects Solar cell arrays Solar cells Solar power generation Strain Stresses Structural health monitoring Tensile testing
researchProduct

Theoretical efficiency limits for thermoradiative energy conversion

2015

Published version of an article in the journal: Journal of Applied Physics. Also available from the publisher at: http://dx.doi.org/10.1063/1.4907392 A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb…

Work (thermodynamics)Chemistrybusiness.industryBand gapEnergy conversion efficiencyVDP::Technology: 500General Physics and AstronomyNanotechnologyPhotovoltaic effectEngineering physicsThermal radiationPhotovoltaicsThermophotovoltaicEnergy transformationthermoradiation photovoltaics energy conversionbusiness
researchProduct